
@ Pablo Oliveira Antonino

SSA 01 – Hello Architecture

TU Kaiserslautern, SS2018
Lecture “Software and System Architecture (SSA)”
TU Kaiserslautern, SS2018
Lecture “Software and System Architecture (SSA)”

Dr. Pablo Oliveira Antonino
pablo.antonino@iese.fraunhofer.de
Dr. Pablo Oliveira Antonino
pablo.antonino@iese.fraunhofer.de

@ Pablo Oliveira Antonino

Hello Architecture

@ Pablo Oliveira Antonino
© Fraunhofer IESE

3

Exercise

Discussion

 What is software architecture?

 State an “intuitive” definition of the term

 Why having a software architecture?

 Your experiences?

 Your challenges?

 Your solutions?

 What does an architect do?

 Why is architecting needed / useful?

 Role in software engineering?

 Skills and expertise architects need?

@ Pablo Oliveira Antonino
© Fraunhofer IESE

4

Foundations

What is Architecture?[1]

 Modules, connections, dependencies and interfaces

 „The big picture“

 An abstraction

 Things that are expensive to change

 A conceptual model

 Satisfying non-functional reqs /quality attributes

 A plan

 A blueprint

 Systems, subsystems, interactions, and interfaces

 Governance

 The outcome of strategic decisions

 Necessary constraints

 Tools and methods

 Technical leadership

 Strategy and vision

…

[1] S. Brown „Software architecture for developers“

@ Pablo Oliveira Antonino
© Fraunhofer IESE

5

Foundations

Software Architecture Definitions

 Software architecture is the structure or structures of the system, which
comprise software elements, the externally visible properties of those
elements, and the relationships among them.

[Software Architecture in Practice, L.Bass, P.Clements, R.Kazman]

 Software architecture is the fundamental concepts or properties of a
system in its environment embodied in its elements, relationships, and
in the principles of its design and evolution.

[Systems and software engineering — Architecture description, ISO Standard 42010]

 Software architecture is the set of design decisions which, if made
incorrectly, may cause your project to be cancelled.

[E. Woods]

 Software architecture is the set of principal design decisions made about
the system.

[Software Architecture: Foundations, Theory, and Practice , E.Dashofy, N.Medvidovic, R. Taylor.]

@ Pablo Oliveira Antonino
© Fraunhofer IESE

6

Foundations

Management Objectives

 Construction, delivery and maintenance of innovative software
systems with predictable and adequate quality delivered in time and
budget

scalability
long-living

minimal cost

high quality

guaranteed service levels
optimized

legacy integration

time-to-market

@ Pablo Oliveira Antonino
© Fraunhofer IESE

7

Foundations

Foundations of Architecture

System
(Code + Infrastructure)

Implemented
Architecture

Intended
Architecture

Architect /
Developers

Prescribes + Describes

Predicts Properties

„Every system has an architecture!“

„You can‘t avoid getting an architecture …!“

„You can only avoid getting a wrong one …!“

„If it is not clear who makes the decisions, someone will make them!“

„Although the system has an architecture, it might not be known!“

Designs + Evolves
Controls

„Architecture is not a phase!“

@ Pablo Oliveira Antonino
© Fraunhofer IESE

8

Foundations

Challenges in Software Engineering

Challenges and complexity arise from …

 the products to be built

 the increasing interconnection of systems

 the integration with already existing systems

 the continuous change of systems

 the collaboration of development organizations

@ Pablo Oliveira Antonino
© Fraunhofer IESE

9

Foundations

Engineering Challenge: Large-Scale Systems

Lines of Code [kLOC]

t
1970 1980 1990 2000 2010

1

10

100

1000

 Examples

 Car window opener

 Car control unit

 Windows XP

10.000 LoC

15.000.000 LoC

40.000.000 LoC

@ Pablo Oliveira Antonino
© Fraunhofer IESE

10

Foundations

Engineering Challenge: Large Development Teams

Increasing system size cannot be compensated with more efficient methods

 Large teams have to collaborate

 Teams

 Distributed over buildings, countries, continents

 Distributed over departments, organizations

 Decomposition of work for parallelization is essential

@ Pablo Oliveira Antonino
© Fraunhofer IESE

11

Foundations

Engineering Challenge: High Quality

Quality is not only about correctness of functionality

Successful software systems have to assure additional properties

 Performance

 Security

 Availability

 Maintainability

 …

These properties are the so-called Quality Attributes

@ Pablo Oliveira Antonino
© Fraunhofer IESE

12

Foundations

The Mission of Architecture

Conceptual tool to cope with complexity
in Software Engineering needed

@ Pablo Oliveira Antonino
© Fraunhofer IESE

13

Foundations

Why Architecture? It is all about Bridging the Gaps!

Problem Space Solution Space

Concerns Drivers Solution
Concepts

Realization

Idea /
Vision

Code
Release

ArchitectureRequirements Arch. Drivers

Information Flow in Software Engineering

Architecting
tn

Evolution

• Clear Technical Debt of the Past
• Prepare/Solve Present Challenges
• Anticipate Future Changes/Needs

tn-m tn tn+p

Change happens,
Systems follow!

Concerns
vs.

Results

Problem Space
vs.

Solution Space

Present
vs.

Past & Future

@ Pablo Oliveira Antonino
© Fraunhofer IESE

14

Foundations

Architecting vs. Architecture

Source:
http://www.karl-gotsch.de
http://blogs.artinfo.com/objectlessons/files/2012/09/0723-architect_sm.jpeg

Activities

Design
Modeling

Communication
Negotiation

Artefacts

Design Decisions
Blueprints & Models

Documentation
Implemented Decisions

@ Pablo Oliveira Antonino
© Fraunhofer IESE

15

Foundations

Architectures: The Artifact

 … provide guidance

 Plan for constructing a system

 Technical leadership and
coordination

 Standards and consistency

 … balance technical risks

 Identification and mitigation

 Definition of solution concepts

 Anticipation (preparation) for
changes

 … enable communication

 Clear technical vision and roadmap

 Explicit documentation for
communication

 … manage the inherent
complexity of software

 Products to be built

 Increasing interconnection of
systems

 Integration with legacy systems

 Collaboration of organizational
units

@ Pablo Oliveira Antonino
© Fraunhofer IESE

16

Foundations

System-of-Systems A.

System A.

Architecture: It is all about the Scope!

Software A.

Ultra-Large-Scale-
System A. Ecosystem A.

Platform A.

Reference A.

Enterprise A.

@ Pablo Oliveira Antonino
© Fraunhofer IESE

17

Foundations

Architecting: The Activity

Lead & Engage
Orchestrate & Govern

Communicate & Negotiate

0110
01

Design
Model & Document

Forecast & Scout
Anticipate & Prepare

Develop & Prototype
Analyze & Reconstruct

@ Pablo Oliveira Antonino
© Fraunhofer IESE

18

Foundations

Architecting: It is all about Speaking the same Language!

Technology (-specific) Level

Business Level

Architecture

Software
Architect

Developers

Business
Managers

Lan
g

u
ag

e

V
alu

e

R
isks

Lan
g

u
ag

e

C
red

ib
ility

@ Pablo Oliveira Antonino
© Fraunhofer IESE

19

Foundations

AssetsInitiatives

Lifecycle

Present

Future
(Anticipation)

Past
(Debt)

Resources Budget

Schedule Value

Quantity Quality

Scope of
Architecting

The Bermuda Triangle
of Architecting

Don’t get lost &
Don’t lose your
investments!

Balance the
architecture
equilibrium!

Note: a change in any triangle
dimension affects the others!

@ Pablo Oliveira Antonino
© Fraunhofer IESE

20

Example

Real Life: “Source Code is the Only Truth”

Source Code

@ Pablo Oliveira Antonino
© Fraunhofer IESE

21

Example

Real Life: “I Can Always Explain How the System…”

[Source: dreamstime.com]

@ Pablo Oliveira Antonino
© Fraunhofer IESE

22

Example

Real Life: White Board and PowerPoint Sketches

@ Pablo Oliveira Antonino
© Fraunhofer IESE

23

Example

Real Life: Architecture Documents

Too Long;
Did not Read

@ Pablo Oliveira Antonino
© Fraunhofer IESE

24

Foundations

An Ideal Architecture Documentation...

... describes what the code itself does not!

e.g.

 What are the design decisions?

 What is the rationale for the decisions?

 What are the discarded alternatives? Why?

 …

@ Pablo Oliveira Antonino
© Fraunhofer IESE

25

Foundations

What do We Need in Terms of Architecture?

Implicit

Explicit

Problem Space Solution Space

Explicit architecture needed to
benefit from architecture!

@ Pablo Oliveira Antonino
© Fraunhofer IESE

26

Foundations

Explicit vs. Implicit Architecture
Problem Space

Implicit

Explicit

Intended
by Stakeholder

Understood
by Architect

elicit/
specify /
document document

guess

consolidate

Problem Space

Concerns Drivers

@ Pablo Oliveira Antonino
© Fraunhofer IESE

27

Foundations

Explicit vs. Implicit Architecture
Solution Space

Implicit

Explicit

Designed
by Architect

Implemented
by Developer

model /
document reconstruct

„hack“

implement

Solution Space

Decisions Manifestation

@ Pablo Oliveira Antonino
© Fraunhofer IESE

28

Foundations

Explicit vs. Implicit Architecture
Problem Space vs. Solution Space

Implicit

Explicit

Intended
by Stakeholder

Understood
by Architect

elicit/
specify /
document document

guess

consolidate

Designed
by Architect

Implemented
by Developer

model /
document reconstruct

„hack“

implement

Problem Space Solution Space

decide

decide

decide

decide

Concerns Drivers Decisions Manifestation

@ Pablo Oliveira Antonino
© Fraunhofer IESE

29

Foundations

Evolution and Drift

Implicit

Explicit

Intended
by Stakeholder

Understood
by Architect

elicit/
specify /
document document

guess

consolidate

Designed
by Architect

Implemented
by Developer

model /
document reconstruct

„hack“

implement

driftdrift

Problem Space Solution Space

decide

decide

decide

decide

Concerns Drivers Decisions Manifestation

driftdrift

@ Pablo Oliveira Antonino

The Architecture of “Hello World”

public class HelloWorld {

public static void main (String[] args) {
System.out.println("Hello World");

}
}

@ Pablo Oliveira Antonino
© Fraunhofer IESE

31

Exercise

Discussion

 Does Hello World have an architecture?

 Yes

 What does it look like?

 No

 Why not?

@ Pablo Oliveira Antonino

The Architecture of “Hello World”

#include <iostream>
using namespace std;

int main()
{

cout << "Hello World";
return 0;

}

public class HelloWorld {

public static void main (String[] args){
System.out.println("Hello World");
}

}

@ Pablo Oliveira Antonino
© Fraunhofer IESE

33

Foundations

Architecture Design Decisions

 Design Decisions Balance competing concerns

 Some Design Decisions are made early in the lifecycle

 Typically have far-reaching effects

 Are hard to change (in later phases or future projects)

 The impact of architecture design decisions has to be known!

@ Pablo Oliveira Antonino
© Fraunhofer IESE

34

Example

Examples of Design Decisions

 Programming language Java

 One central database

 No central instance of data, everything is distributed

 Three Tier Architecture

 Usage of an app generation framework for serving iOS and Android
devices

 XML as data format

 Compression of data between client and server due to low network
bandwidth

 Outsourcing of implementation of a component

 …

@ Pablo Oliveira Antonino

Wrap Up

@ Pablo Oliveira Antonino
© Fraunhofer IESE

36

Foundations

Common Misconceptions

 Software Architecture may or may not exist in my system

 Software Architecture is a phase

 I can change the Software Architecture of my system later, whenever
needed

 Documenting Software Architecture is simply an overhead; I can always
remember and explain my system

 Software Architecture will be the same in the following projects

 Software Architecture has nothing to do with my coding
Further reading: Top 10 software architecture mistakes
http://www.infoq.com/news/2007/10/top-ten-architecture-mistakes

@ Pablo Oliveira Antonino

Problem Space Solution Space

Concerns Drivers Solution
Concepts

Realization

Idea /
Vision

Code
Release

Architecture

Architecting in a Nutshell

Requirements Arch. Drivers

Information Flow in Software Engineering

Architecting
tn

Evolution

• Clear Technical Debt of the Past
• Prepare/Solve Present Challenges
• Anticipate Future Changes/Needs

tn-m tn tn+p

Change happens,
Systems follow!

Architect’s Activities

Value Proposition
of Architecting
Balance the architecture
equilibrium!

Lead & Engage
Orchestrate & Govern

Communicate & Negotiate

0110
01

Design
Model & Document

Forecast & Scout
Anticipate & Prepare

Develop & Prototype
Analyze & Reconstruct

@ Pablo Oliveira Antonino
© Fraunhofer IESE

38

Foundations

AssetsInitiatives

Lifecycle

Present

Future
(Anticipation)

Past
(Debt)

Resources Budget

Schedule Value

Quantity Quality

Architecting

The Bermuda Triangle
of Architecting

Don’t get lost &
Don’t loose your
investments!

Balance the
architecture
equilibrium!

Note: a change in any triangle
dimension affects the others!

@ Pablo Oliveira Antonino
© Fraunhofer IESE

39

Foundations

Architectures…

 … provide guidance

 Plan for constructing a system

 Technical leadership and
coordination

 Standards and consistency

 … balance technical risks

 Identification and mitigation

 Anticipation (preparation) for
changes

 … enable communication

 Clear technical vision and roadmap

 Explicit documentation for
communication

 … manage the inherent
complexity of software

 Products to be built

 Increasing interconnection of
systems

 Integration with legacy systems

 Collaboration of organizational
units

@ Pablo Oliveira Antonino
© Fraunhofer IESE

40

Foundations

Evolution and Drift

Implicit

Explicit

Intended
by Stakeholder

Understood
by Architect

elicit/
specify /
document document

guess

consolidate

Designed
by Architect

Implemented
by Developer

model /
document reconstruct

„hack“

implement

driftdrift

Problem Space Solution Space

decide

decide

decide

decide

Concerns Drivers Decisions Realization

driftdrift

@ Pablo Oliveira Antonino
© Fraunhofer IESE

41

Foundations

Architecture Design Decisions

 Design Decisions Balance competing concerns

 Some Design Decisions are made early in the lifecycle

 Typically have far-reaching effects

 Are hard to change (in later phases or future projects)

 The impact of architecture design decisions has to be known!

@ Pablo Oliveira Antonino

