
Tool-supported extraction of conceptual
interoperability constraints of software units from

UML Diagrams
Hadil Abukwaik

Department of Computer Science
University of Kaiserslautern

Kaiserslautern Germany
Email: abukwaik@cs.uni-kl.de

Dieter Rombach
Department of Computer Science

University of Kaiserslautern
Kaiserslautern Germany

Email: rombach@cs.uni-kl.de

Abstract—Successfully integrating an external software unit
into a system requires software architects to check the conceptual
constraints of this unit to ensure that it has no mismatches with
the system. However, such constraints about software units are
usually hidden within their architectural documents that are
not publicly shared with clients. Hence, owners of the software
units need to search for the constraints in the architecture
document and provide them to clients. However, this manual
task is not trivial and it is time consuming especially in the
case of large software systems. In this paper, we demonstrate
a tool-supported, systematic approach for extracting the
interoperability-related constraints of software systems from
their architecture and lower-level design documentation. Our
proposed approach aims at helping architects in performing
the conceptual interoperability analysis tasks in an effective
and efficient manner. To bring the approach into practice, we
developed an aiding tool that assists architects with easy-to-use
interfaces. We plan to evaluate our approach empirically through
a controlled experiment where we will test our hypotheses about
its positive effect on architects effectiveness and efficiency in
performing the interoperability analysis.

Keywords- conceptual interoperability; interoperability analysis;
information extraction; software architecture; tool support

I. INTRODUCTION

Interoperability is the ability of two or more separately-
developed software units to communicate and exchange data in
a seamless and meaningful way [1]. This ia an important prop-
erty as it plays a vital role in today’s large software systems.
For example, a system-of-systems [2] needs interoperability
to put together a number of information systems in order
to achieve more functionality and better performance (e.g.,
a health care system-of-systems that combines application
of doctor, patient, and pharmacy for better treatment). Sim-
ilarly, cyber-physical systems [3] need interoperability to link
computational software units with physical resources (e.g., an
automated traffic control cyber-physical system that connects
traffic lights and vehicles on the road). Having this being
said, to successfully integrate software units, it is required to
identify and resolve any technical or conceptual interoperabil-
ity mismatches. While technical mismatches (e.g., different
communication protocols, programming languages, data types,

arguments orders, etc.) hinder the exchange of information and
services among software units; conceptual mismatches (e.g.,
usage context, architectural constraints, terminologies, qual-
ities, etc.) lead to meaningless or undesirable interoperation
results. Such conceptual mismatches are expensive to resolve
and should be found early in the integration project before
spending effort on resolving the technical mismatches.

According to a scoping study we performed earlier [4],
existing works focus mainly on achieving the technical level
of interoperability of software units and lack the focus on the
conceptual level. In the context of black-box interoperations, in
which the source code of a software unit is not publicly shared,
the typically available source of information about a software
unit is the documentation of its Application Programming In-
terface (API). This API documentation describes the software
unit in terms of its functionality, input, output, and data type.
Hence, interested clients in a software unit investigate its API
documentation to find the technical constraints [5].

However, API documentation of a software unit is insuf-
ficient source of information for a software architect who
is assessing the conceptual interoperability mismatches. This
is because API documentations are typically technical ori-
ented and do not expose all conceptual and architectural
constraints that are usually hidden in the unshared architectural
documents. These architecture documents are usually written
using the popular Unified Modeling Language (UML) [6]
that enables describing the software structure (e.g., component
diagram) and behavior (e.g., state chart diagram). On another
hand, it is a tedious and time consuming task for the own-
ers of a software unit to manually find the interoperability-
relevant pieces of information about a specific software unit
from across the whole system’s UML diagrams, and then to
add these information to the shared API documentation for
interested clients.

In this paper, we present a tool-supported approach for ex-
tracting the COnceptual Interoperability coNstraints (COINs)
from UML diagrams. This work is an extension of our
previously proposed framework for supporting interoperability
analysis [7]. The goal of our presented COINs’ extraction



approach is to alleviate the burden from software architects’
shoulders in explicitly publishing the conceptual information
about their interoperable software units, and accordingly to
support interested clients in performing proper interoperability
analysis in order to effectively detect the conceptual mis-
matches. This is achieved through the: (1) semi-automatic
extraction of COINs from internal UML documentation, and
(2) automatic documentation of extracted COINs in a standard
ready-to-publish document that we call the ”COINs Portfolio”.
Our work offers advantages for software companies that build
interoperable systems. That is, on the short-term planning,
we expect that the proposed extraction idea would help these
companies increasing their effectiveness and efficiency in
identifying and documenting the conceptual constraints of
their interoperable software systems. Besides, on the long-term
planning, these companies would grow their business value as
a result of publishing sufficient interoperability information
about their systems that would lead to more successful inter-
operations with less integration effort.

The rest of the paper is organized as follows: We start with
a motivation scenario in Section II. Then, we describe our
COINs extraction approach in Section III. In Section IV and
V, we discuss the planned evaluation for our work and related
work accordingly. We finally conclude and present future work
in Section VI.

II. MOTIVATING EXAMPLE

This section outlines a brief example for the application of
our tool-supported COINs extraction approach.

Imagine a company Alpha that has developed an ATM (S1),
which is a cash machine developed with the goal to make
its software system interoperable. That is, S1 is intended
to exchange data and services in a meaningful way with
other separately developed software systems (e.g., mobile
apps of bank clients, bank management systems, etc.). Hence,
the company has created the API documentation of S1 and
published it for interested third-party clients.

Afterwards, another company Beta gets interested in inte-
grating an instance of S1 within their Bank system (S2). The
responsible person for assessing the feasibility of building
a successful interoperation in this scenario is the software
architect of S2, Noah. He is responsible for analyzing the
interoperability constraints for both S1 and S2 and he aims at
detecting any conceptual mismatches between them. Hence,
Noah starts with a manual investigation of the text in S1’s
API documentation for its offered functionalities and related
data (e.g., ”Withdrawal” function and its related data element
”Amount” that represents the requested money to be with-
drawn). Based on this investigation, Noah could identify some
technical mismatches, for example, he finds that S1 uses the
Secure Socket Layer (SSL [8]) protocol to ensure the security
over communications, while S2 uses another security protocol
called the Transport Layer Security (TSL [9]). However, Noah
could not detect some of the conceptual mismatches because
their related constraints are hidden in the unshared UML
diagrams of S1. Here are some explaining examples:

• A class diagram of S1 shows that the ”Withdrawal”
transaction has a ”history” file that contains up to 100
transactions, while S2 assumes that the ”history” contains
all withdrawal transactions on the account within a year
(which may be more than 100);

• A use case diagram of S1 states that the ”Withdrawal”
transaction is permitted only for the owner of the account,
while S2 allows shared account for a husband and wife
where some mechanism is used to handle simultaneous
access);

• A sequence diagram of S1 shows that the interaction
type with the ”Withdrawal” functionality is synchronous
meaning that the user can make a second withdrawal
transaction before receiving a confirmation on the first.
While, S2 uses asynchronous interactions that require a
confirmation on a transaction before allowing the second
one.

Obviously, having such information in the API document
would enhance the results of Noah’s analysis and would
save the cost spent on handling the unexpected conceptual
mismatches late in the integration project.

A possible approach to handle this issue is to contact
company X asking for further information about S1. However,
adopting this solution might be expensive for company X
especially for repeated inquiries. Also, the waiting time might
be inconvenient for clients. Alternatively, we propose that
company X publishes the relevant conceptual information of
S1 in advance for interested clients. To make this practical and
avoid the manual, time-consuming effort , especially for large
systems, we support architects with a tool that semi-automate
the extraction and documentation of the conceptual constraints
of their interoperable systems!

III. TOOL-SUPPORTED EXTRACTION OF CONCEPTUAL
INTEROPERABILITY CONSTRAINTS

This section describes our COIN model, the extraction
process, tool support, and planned evaluation.

A. The Conceptual Interoperability Constraint (COIN)

Fig. 1. A COIN meta-model.

The corner stone of our work is the COINs or the con-
ceptual interoperability constraints, which we define as the
conceptual characteristics of the software unit that if they are
misassumed, they may lead to conceptually-wrong, meaning-
less, or improper interoperation results [7]. In Figure 1, we
present our COIN meta-model and show its structure. Each



COIN in the interoperable software system is related to an
element (i.e., data, function, component, or system), belongs
to a conceptual category (i.e., syntax, semantic, structure,
dynamic, context, and quality), has a value (i.e., qualitative
and/or quantitative description), and has a significance weight
(i.e., high, medium, or low).

The COINs we target in our extraction approach are the ones
that represent a cause of conceptual interoperability mismatch
between two software systems. Figure 2 presents the whole
set of COINs and their categories with examples. Note that,
the shaded rows outlines the so far supported COINs with the
current version of our extraction tool.

Fig. 2. Conceptual interoperability constraints (COINs).

B. Extracting COINs from UML Diagrams
As we mentioned in Section I and II, creating the COINs

Portfolio manually is a tedious and expensive task. This is
beacause it requires sifting through the UML documentation
of the whole software system, and then extracting the only
useful pieces of information for interoperability analysis. To
address this issue, we have previously proposed an abstract
idea about a Portfolio Generator [7]. In this subsection and
the one after we describe this idea in details along with its
supporting tool.

In our approach, we aim at gathering all related COINs
of an interoperable system into a standard document called
the “COINs Portfolio”. The input to our COINs’ extraction
approach is a consistent, complete, and up-to-date UML
document about the interoperable software unit. This UML
document includes structural diagrams (e.g., component dia-
gram, deployment diagram, class diagram, etc.) and behavioral
diagrams (e.g., use case diagram, sequence diagram, etc.). This
input goes through the following four activities in order to
result in the desired COINs Portfolio (as seen in Figure 3):

Identification of interoperable elements. In this activity,
the software architect identifies the UML elements (i.e., com-
ponents, classes, use cases, or actors) of the system, which
are involved in interoperations with other software systems.
This identification happens in terms of assigning an ”Interop-
erability Type” property for the element. For example, in the

ATM example described in Section II, the ”Withdrawal” use
case in the use case diagram would have the interoperability
property declared, and similarly this would be declared for the
the ”Amount” data element in the class diagram. Declaring this
property for the elements directs the subsequent activities of
the COINs extraction.

Automatic extraction of COINs. To enable the proposed
automation in this activity, an Interoperability Knowledge Base
(IKB) is created and charged with COIN extraction templates
from UML diagrams. A COIN extraction template is a set
of rules that if it is met by an interoperable element within
a UML diagram, then a COIN candidate for the element is
created and added to the list of COIN candidates. An example
of a context COIN template is:

• if there is a use case within a use case diagram that
is identified as interoperable element (e.g., the ”With-
drawal” use case within the use case diagram of S1),

• and it is inherited from another use case (e.g., ”With-
drawal” use case is one kind of the ”Transaction” use
case,

• and the inherited from use case has a constraint (e.g.,
the ”Transaction” use case has a constraint that only the
account owner can do it),

• then, a context COIN will be added to the list of COIN
candidates for the use case element (e.g., the ”With-
drawal” use case has a constraint that only the account
owner can do it.

Note that the extraction activity starts with checking each
UML diagram of the systems to find if it contains any element
with the interoperability property declared. Then, only the
interoperable elements are checked against the predefined
COIN templates saved in the IKB.

Manual filtering for the extracted COIN candidates. This
activity is performed manually by the system architects who
have the final word to approve or disapprove the automatically
extracted COINs within the final published COINs Portfolio.
Furthermore, they can manually add more COINs to the
Portfolio if they see it important and useful to share with
clients.

Automatic generation for the COINs Portfolio. Finally,
the approved and the manually added COINs are bundled
together and categorized according to the elements they are
related to. Then, they are documented in a standard form
that is ready to share with clients who will use it for their
interoperability analysis task if interested in interoperating
with the software system.

C. The CoinsExtractor Tool

To make our proposed idea applicable in practice, we imple-
mented the CoinsExtractor tool [10] that assists architects with
easy-to-use interfaces in extracting and publishing the COINs
of the interoperable units of their software systems. This
section summarizes the main features, design, and limitations
of the tool (for details please refer to [10]).

Main features. The CoinsExtractor has a number of fea-
tures that supports architects through the aforementioned ac-



Fig. 3. COINs extraction process.

tivities in Subsection B, which takes some burden off the
architects’ shoulders as the following:

• Interoperability Tags. With these self-implemented tags
for the UML elements, the architect can directly deter-
mine their systems’ interoperable elements. Accordingly,
if an element is tagged as interoperable, all its instances
within all the diagrams get tagged as interoperable too.
The tool maintains a table of interoperable elements,
which represents the architect knowledge about the in-
teroperable units of the system and it would be reused in
all future integration projects.

• COINs Extraction. This feature implements the COIN
templates that we described earlier in Subsection B.
Hence, the tool saves the architect’s time and effort
by automatically looking for the relevant COINs about
the interoperable elements only. In addition, this feature
guarantees consistency in terms of what COINs are being
extracted and how they are documented across projects
of interoperable units or systems.

• COINs Review. The CoinsExtractor tool realize the
COINs filtering by enabling the architects to efficiently
review, update, approve, or delete the automatically ex-
tracted COINs. It offers two views: (1) diagram-based
view where COINs can be navigated according to the
source diagram that they are found in, and (2) element-
based view where COINs can be navigated according to
the the interoperable element they belong to.

• COINs Portfolio Generation. Finally, the tool creates
a ready-to-share, web-based COINs Portfolio (see an
example in Figure 4). The Portfolio arranges the COINs
according to their categories to facilitate the conceptual
interoperability analysis task that will be performed by
interested clients.
Design and Implementation. The CoinsExtractor has a
multi-layered architecture with a presentation layer that is
responsible for tool-architect interactions, business layer
that includes the logic units responsible for processing
the UML diagrams and extracting their COINs, the data
access layer that reads input from the UML database and
writes results into the output file, and finally the IKB
that stores all predefined COIN templates as we described

in the previous subsection. These layers lead to the tool
modularity that allows extending its COIN templates to
cover more categories and accordingly enhancing the in-
teroperability analysis results. The CoinsExtractor tool is
implemented as an extension for the Enterprise Architect
(EA) application, which is one of the powerful, widely-
used architecture modeling tools [11].
Limitations. The current version of the tool accepts input
(i.e., UML diagrams) created by the Enterprise Architect
only. It also assumes that the UML input is created
according to the UML standard notations specified by the
Object Management Group (OMG) [12] and published
by the International Organization for Standardization
(ISO) [13]. To ensure that these assumptions are realistic
enough to use the tool in industry, we have reviewed the
tool with architect experts and we used their feedback to
enhance the tool usability.

Fig. 4. COINs Portfolio generated by CoinsExtractor [10].

IV. PLANNED EMPIRICAL EVALUATION

To empirically evaluate the ideas that we have presented
in this paper, we plan for conducting a controlled experiment.
The goal of this experiment, formulated by means of the Goal-
Question-Metric template [14], is to analyze the tool-supported
approach for extracting COINs from UML diagrams for the
purpose of evaluation with a focus on effectiveness, efficiency,
and acceptance from the perspective of software architects in
the context of a controlled experiment with students. For more



Fig. 5. Experimental design for evaluating the analysis approach.

details about the experiment (i.e., detailed information about
the research questions, process, material, and data analysis
plan) please refer to [15].

Figure 5 outlines the experimental design of the planned
controlled experiment, in which we plan to have two groups
of students who we hand them the same input (i.e., UML
diagrams of two software systems) and we ask them to find
the the COINs of each system in the first step and their
mismatches in the second one. While, the control group applies
ad-hoc approach in analyzing the input, the experimental group
applies our proposed approach along with the support of our
CoinsExtractor tool. Once we execute the experiment, we will
analyze the collected data from both groups and compare
between them with regards to correctness and completeness,
and then we will publish the results.

V. RELATED WORK

A. Detecting Mismatches in Black-box Context

Reuse analysis approaches have been proposed for finding
component mismatches. Bhuta et al. [16] propose to manually
create component definitions for technical and architectural
assumptions, then to apply mismatch-detection rules on them.
Our approach extends the architectural part of this work by fur-
ther conceptual constraints to reduce the possibility of facing
risks of unplanned conceptual mismatches. Besides, we try to
reduce the cost by finding the already documented constraints
in the UML with automation support, rather than writing defi-
nitions manually from scratch. Testing-based techniques such
as Halle’s [5] are useful in identifying mismatches, though,
they require preparing complete, high-quality test suites and
launching interoperation for each test case. Such intensive
testing is expensive and impractical due to invocation costs.
Prototyping methods for analyzing software components pro-
pose simulating its usage within other systems [17]; however,
this may not always be feasible as it requires acquiring the
component, learning, and evaluating it. Conformance check-
ing has an active research community with design-by-contract
enforcement techniques [18] where formal specification of
methods pre-, post- conditions, and invariants are used in
static [19] or dynamic [5] conformance analysis. Although

this enables detecting technical conformance violations auto-
matically, it does not address the conceptual ones. Therefore,
our proposed idea stretches the conformance checking to the
conceptual level.

B. Tools for Interoperation Analysis

Previous works have proposed tools to support the interop-
erability analysis task. For example, Bahuta et al. presented
a tool called, the Integration Studio (iStudio) [16], which
performs automatic assessment of architectures and proposes
mismatch resolution. Compared to our CoinsExtractor tool,
iStudio depends on a completely manual specification for the
architectural interfaces, while our tool saves this cost through
the semi-automatic extraction of such information from avail-
able UML documents. In addition, we extend the architectural
attributes covered by iStudio with further conceptual features
like context and quality. Another interoperability support-
ing tool was proposed by Ullberg et al. [20] for analyzing
enterprise architecture models. This tool allows assessment
theories to be specified using a formal modeling language (i.e.,
extension of the Object Constraint Language- OCL [21]), and
then it utilizes it in the interoperability analysis. Relating this
to our CoinsExtractor, our tool infers the conceptual features
that would be the input for such assessment theories. On other
hand, Buschle [22] developed a tool that analyzes properties
including interoperability to provide decision-making support
for information technology in enterprise architecture models.
To the best of our knowledge, the CoinsExtractor is the first
tool to semi-automate the extraction of conceptual interoper-
ability constraints from UML diagrams, which aids architects
and eliminates unexpected conceptual mismatches.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented an approach for extracting
the conceptual interoperability constraints of an interoperable
software system from its UML diagrams. The approach aims
at enhancing the effectiveness and efficiency of software
architects in extracting and publishing their systems’ COINs
with third-part clients. We have also outlines the features of
the supporting tool that we have implemented as an extension
for the Enterprise Architect software application.



Based on our ongoing research, we aim to create further
COIN templates to add them in our interoperability knowledge
base, and to transform the COINs Portfolio into a formal
notation to enable the automatic mapping of two interoperating
systems to find their mismatches. We also plan to execute the
designed controlled experiment and to evaluate the tool within
industrial case studies too.

ACKNOWLEDGMENT

This work is part of the PhD research of Hadil Abukwaik
under the supervision of Prof. Dieter Rombach and is funded
by the PhD Program of Kaiserslautern University. The authors
would like to thank Mohammed Abufouda, Shah Rukh Hu-
mayoun, and the anonymous reviewers for their constructive
comments.

REFERENCES

[1] A. Geraci et al., IEEE standard computer dictionary: Compilation of
IEEE standard computer glossaries, 1991.

[2] W. A. Crossley, “System of systems: An introduction of purdue univer-
sity schools of engineering’s signature area.”

[3] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control
technology, vol. 12, pp. 161–166, 2011.

[4] H. Abukwaik, D. Taibi, and D. Rombach, “Interoperability-related
architectural problems and solutions in information systems: A scoping
study,” in Software Architecture. Springer International Publishing,
2014, vol. 8627, pp. 308–323.

[5] S. Hallé, T. Bultan, G. Hughes, M. Alkhalaf, and R. Villemaire,
“Runtime verification of web service interface contracts,” Computer,
vol. 43, no. 3, pp. 59–66, 2010.

[6] G. Booch, The unified modeling language user guide. Pearson
Education India, 2005.

[7] H. Abukwaik, M. Naab, and D. Rombach, “A proactive support for
conceptual interoperability analysis in software systems,” in Working
Conference on Software Architecture. 2015. WICSA’15, 2015.

[8] A. Freier, P. Karlton, and P. Kocher, “The secure sockets layer (ssl)
protocol version 3.0,” 2011.

[9] E. Rescorla, “The transport layer security (tls) protocol version 1.1,”
Transport, 2006.

[10] H. Abukwaik, M. Abujayyab, and D. Rombach, “Coinsextractor: The
architects’ buddy in identifying interoperability-relevant architectural
constraints,” in European Conference on Software Architecture. 2015.
ECSA’15, 2015.

[11] “Enterprise Architect,” http://sparxsystems.de/, Sparx System, accessed:
2015-05-08.

[12] O. CORBA and I. Specification, “Object management group,” Joint
revised submission OMG document orbos/99-02, 1999.

[13] J. Koppell, “International organization for standardization,” Handb.
Transnatl. Gov. Inst. Innov, vol. 41, no. 8, p. 289, 2011.

[14] V. R. Basili, “Software modeling and measurement: the
goal/question/metric paradigm,” 1992.

[15] H. Abukwaik, “Empirical evaluation for the conceptual interoperability
analysis approach- controlled experiment design,” Kaiserslautern
University, CS Department, Tech. Rep., 2014. [Online]. Available:
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/3915

[16] J. Bhuta, “A framework for intelligent assessment and resolution of
commercial-off-the-shelf product incompatibilites,” Ph.D. dissertation,
University of Southern California, 2007.

[17] R. Land, L. Blankers, M. Chaudron, and I. Crnković, “Cots selection
best practices in literature and in industry,” in High Confidence Software
Reuse in Large Systems. Springer, 2008, pp. 100–111.

[18] B. Meyer, “Applying’design by contract’,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[19] B. Rubinger and T. Bultan, “Contracting the facebook api,” arXiv
preprint arXiv:1009.3715, 2010.

[20] J. Ullberg, U. Franke, M. Buschle, and P. Johnson, “A tool for inter-
operability analysis of enterprise architecture models using Pi-OCL,” in
Enterprise Interoperability IV. Springer, 2010, pp. 81–90.

[21] O. A. Specification, “Object constraint language.”

[22] M. Buschle, P. Johnson, and K. Shahzad, “The enterprise architecture
analysis tool–support for the predictive, probabilistic architecture mod-
eling framework,” in AMCIS 2013, 2013, pp. 3350–3364.


