Extracting Conceptual Interoperability Constraints from
APl Documentation using Machine Learning

Hadil Abukwaik', Mohammed Abujayyab?, Shah Rukh Humayoun!, Dieter Rombach*
University of Kaiserslautern
67663 — Kaiserslautern, Germany
Yabukwaik, humayoun, rombach}@cs.uni-kl.de,?abujayya@rhrk.uni-kl.de

ABSTRACT

Successfully using a software web-service/platform API re-
quires satisfying its conceptual interoperability constraints
that are stated within its shared documentation. However,
manual and unguided analysis of text in API documents is
a tedious and time consuming task. In this work, we present
our empirical-based methodology of using machine learning
techniques for automatically identifying conceptual interop-
erability constraints from natural language text. We also
show some initial promising results of our research.

1. INTRODUCTION

Conceptual interoperability constraints (COINSs) are re-
strictions on interoperable software units and their related
data elements at different conceptual levels (i.e., syntax, se-
mantics, structure, dynamics, context, and quality) [1]. For
successful interoperations, such constraints need to be iden-
tified and fulfilled. Otherwise, they may cause conceptual
mismatches that hinder the interoperation or produce mean-
ingless results, and consequently lead to expensive resolution
at late project stages. Therefore, third-party clients need
to effectively analyze the shared documentation of external
APIs. However, manual sifting of natural language (NL)
text within API documents is a tedious and time consuming
task, which also requires lexical and linguistic analysis skills.

To cope with these challenges, we elaborate on Abukwaik
et al. [1] ideas of extracting a complementary set of concep-
tual constraints from text in API documentation using ma-
chine learning (ML) and natural language processing (NLP)
technologies. Our goal is to support analysts in perform-
ing the conceptual interoperability analysis effectively, while
keeping the associated cost of identifying COINs low. In our
work, we follow a systematic empirical-based methodology
that has two advantages, i.e., tracing and verifying docu-
mented results between the research phases, and repeating
the defined activities in our protocol by other researchers to
address the bias threat to validity. The remainder of the
paper explains our research methodology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ICSE *16 May 14-22, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4205-6/16/05.
DOL: http://dx.doi.org/10.1145,/2889160.2892642

2. EMPIRICAL INVESTIGATION OF API
DOCUMENTATIONS

In this phase, we explored the current state of COINs (in
terms of representation and recurring patterns) within real-
world API documentations, with the objective to find the
potentials of automating their extraction. In order to get
generalizable results, we performed a multiple-case study
with literal replication of cases from different domains. The
study protocol included the following three activities:

Case Selection: Our selection criteria were content rel-
evance to research goal (i.e., document was not fully tech-
nical, but it contained conceptual constraints too) and API
popularity according to published statistics'. We selected
four cases from the Web-service API domain (i.e., Skype,
GoogleMaps, SoundCloud, and Instagram) and two cases
from the Platform API domain (i.e., AppleWatch and Eclipse).

Case Execution: For each case, we carried out three
tasks: 1) Data Preparation — We implemented a code us-
ing the PHP Simple HTML DOM Parser? library to pre-
process the API documentation text by eliminating its noise
(i.e., headers, images, pure code, etc.), breaking it into single
sentences, and saving them in our predefined data extrac-
tion sheet. For time limitations, we selected inclusive parts
of large API documents (e.g., the Plug-in part of Eclipse).
2) Data Collection — We recorded the demographic infor-
mation about each case (e.g., popularity score, developing
company, development year, etc.) and some statistical in-
formation (e.g., total number of sentences). Also, we main-
tained a repository for the original API documents and the
data extraction sheet. 3) Data analysis — We manually ex-
amined each sentence in the extraction sheet and classified
it with one of the COIN categories [1] if it applies; other-
wise, we classified it as a Not-COIN category. For example,
the sentence “a user is encapsulated by a read-only Person
object” is classified as a Structure COIN. As the classifica-
tion has critical effect on the subsequent phases, two of the
authors replicated it, where inconsistencies were discussed
and resolved based on consensus. Executing the six cases
was tedious and it took about 239 person-hours.

Cross-Case Analysis: Finally, we aggregated the clas-
sified sentences from all cases into one output, which we call
COINs Corpus and it represents the ground truth for the
later tasks. Table 1 shows, in descending order, the num-
ber of instances for each COIN category found across the
cases. The imbalance between the number of instances for

!Programmable Web: www.programmableweb.com
2Simple HTML DOM: http: //simplehtmldom.sourceforge.net

Table 1: COIN instances in the investigated cases

COIN category | No. of instances
Not-COIN 960
Dynamic 570
Semantic 551
Structure 107
Syntax 57
Quality 25
Context 13

each category is related to the technical-orientation of the
current API documentation. For example, the number of
sentences describing the service usage context or quality at-
tributes are typically less than these describing its semantic
goal or dynamic process.

3. AUTOMATIC IDENTIFICATION OF COINS

VIA MACHINE LEARNING CLASSIFIER

In this phase, we aim at automating the identification of
COINs in NL text of API documents. To achieve this goal,
we first built a feature model for our contributed ground
truth data set (i.e., the COINs Corpus), then we utilized it
within a ML classifier. Figure 1 outlines this phase activities,
which we performed them all using the Weka version 3.7.123.
Note that, we adopted an experimental strategy to find the
best combination of features and a ML classifier based on
the accuracy of the classification results.

COINs Feature selection H Set of Feature
Corpus and reduction features modeling
I
Feature model
Classified ML class.ifier “of COINs Corpus”
testing subset Evaluatllon. Training Testing
“by Cross-validation” subset subset

Figure 1: Using ML for COINs identification

Building the Feature Model of the COINs Corpus:
To supervise the classifier learning, we started with the fea-
ture selection to identify the most significant and informa-
tive features of the corpus data set. Therefore, we selected
the frequently occurring keywords and sentence structures
using a number of NLP techniques (e.g., tokenizing, stop-
words filtering, stemming, etc.). For example, the keyword
“encapsulate” is a feature for the Structure COIN category.
To enhance the classification performance, we applied the
feature reduction based on the occurrence frequency of fea-
tures using the N-Grams [7] model. Finally, we built the
feature model of our COINs corpus as a matrix of features
and COIN sentences. To weight the matrix cells, we used the
Term Frequency-Inverse Document Frequency (TF-IDF) [6]
that calculates the weight according to the feature frequency
in the sentence and its importance across the whole corpus.

Classifier Selection: We experimented the accuracy of
our feature model for the COINs Corpus within a number of
classifier algorithms using a k-fold cross-validation [8] with
k =10 (i.e., the data set was divided into 10 subsets). For

SWeka: http://www.cs.waikato.ac.nz/ml/weka

10 runs, one subset was for testing and 9 subsets were for
training the classifier. Finally, we took the average of the 10
runs. Table 2 shows that the Naive Bayes (NB) [4] and Sup-
port Vector Machine (SVM) [2] algorithms achieved the best
accuracy results. These two algorithms have been proven to
be the most effective text classifier algorithms [3].

Initial Results: For classifying 7 COIN categories, we
have achieved accuracy f-measure of 62.2% for NB and 59.5%
for SVM (see Table 2). We believe that these results are
promising, knowing that we have a relatively small size cor-
pus (i.e., less than 3K sentences). Also, limiting the classi-
fication categories to COIN and Not-COIN, the f-measure
increases to 76% for NB and 72% for SVM (see Table 3).

Table 2: Initial results of classifying 7 COIN classes

Classifier Precision| Recall F-measure
Naive Bayes (NB) | 63.7% 61.8% 62.2%
Support Vector | 59.7% 60.4% 59.5%
Machine (SVM)

Random Forest 58.9% 55.2% 50.9%
Decision Tree 48.1% 49.5% 48.2%
KNN, K=1 53.8% 48.9% 41.9%
KNN, K=2 50.6% 44.5% 31.4%

Table 3: Initial results of classifying 2 COIN classes

Classifier Precision| Recall F-measure
Naive Bayes (NB) | 76.6% 76.5% 76.0%
Support Vector | 71.9% 72.0% 72.0%

Machine (SVM)

Limitations: Accuracy — Training the classifier using un-
balanced amount of data for each COIN class is a challeng-
ing task that limits the accuracy results. However, if we
have a larger corpus and consequently more training data,
then the obtained accuracy could be increased. Robustness
- Reading API documentations written by non-native En-
glish speakers or developers who lack technical-writing skills
is a challenging task for humans. Similarly, the correctness
of our model results decreases with informal phrases, am-
biguous sentences, and implicit or hidden assumptions.

4. CONCLUDING REMARKS

In this paper, we presented our work on extracting concep-
tual interoperability constraints from NL text via ML. Pre-
vious researches on API documentation proposed identifying
parameters’ dependency constraints [9], methods’ pre/post
conditions [5], and resource specifications [10]. While some
of these works used NLP with rule-based identification (e.g., [5,
9]), Zhong et al. [10] used ML to identify the name of re-
stricted entities but not the restrictions themselves.

In the future, we plan to increase our results significance
by enriching the corpus with further classified data from
other cases of API documentations, and to refine the clas-
sification algorithms by including lexical references (e.g.,
WorldNet) and some handling techniques for data imbal-
ance. Also, we intend to examine other classification algo-
rithms (e.g., multinomial NB) to achieve better accuracy.

5. ACKNOWLEDGMENTS

This work is supervised by Prof. Dieter Rombach and
funded by the PhD Program of the Computer Science De-
partment of University of Kaiserslautern.

6.
1]

REFERENCES

H. Abukwaik, M. Naab, and D. Rombach. A proactive
support for conceptual interoperability analysis in
software systems. In Working Conference on Software
Architecture. 2015. WICSA’15, 2015.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1-27:27,
2011. Software available at
http://www.csie.ntu.edu.tw/ " cjlin/libsvm.

S. Dumais, J. Platt, D. Heckerman, and M. Sahami.
Inductive learning algorithms and representations for
text categorization. In Proceedings of the seventh
international conference on Information and
knowledge management, pages 148-155. ACM, 1998.
G. H. John and P. Langley. Estimating continuous
distributions in bayesian classifiers. In Proceedings of
the Eleventh conference on Uncertainty in artificial
intelligence, pages 338-345. Morgan Kaufmann
Publishers Inc., 1995.

R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and
A. Paradkar. Inferring method specifications from
natural language api descriptions. In Proceedings of
the 34th International Conference on Software
Engineering, pages 815-825. IEEE Press, 2012.

S. Robertson. Understanding inverse document
frequency: on theoretical arguments for idf. Journal of
documentation, 60(5):503-520, 2004.

A. Rojo. Quantitative methods in corpus-based
translation studies: A practical guide to descriptive
translation research michael p. oakes and meng ji
(eds)(2013). Journal of Research Design and Statistics
in Linguistics and Communication Science,
1(1):113-118, 2013.

M. Stone. Cross-validatory choice and assessment of
statistical predictions. Journal of the Royal Statistical
Society. Series B (Methodological), pages 111-147,
1974.

Q. Wu, L. Wu, G. Liang, Q. Wang, T. Xie, and

H. Mei. Inferring dependency constraints on
parameters for web services. In Proceedings of the
22nd international conference on World Wide Web,
pages 1421-1432. International World Wide Web
Conferences Steering Committee, 2013.

H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring
resource specifications from natural language api
documentation. In Proceedings of the 2009
IEEE/ACM International Conference on Automated
Software Engineering, pages 307-318. IEEE Computer
Society, 2009.

